

© I F P E N - 2 0 2 5

<u>Anne-Sophie Gay</u>, Elodie Devers, Jérôme Danguin, Mathieu Vidalie, Sylvie Lopez PROMETIA, 12th Scientific Seminar – Naples – November 2025

IFPEN PRESENTATION

IFPEN AT A GLANCE

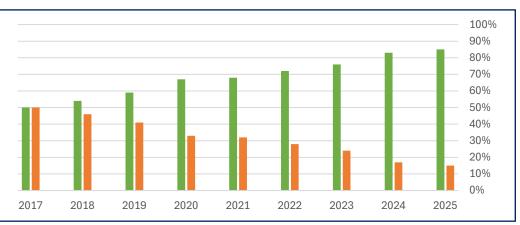
Public sector **R&I** institution

Training center

Industrial Group

INTERNATIONAL SCOPE in the field of **ENERGY, MOBILITY** and **THE ENVIRONMENT**

1,543 employees


incl. 1,087 R&I engineers & technicians €154 M Own resources in 2024

€122 M Budget allocation in 2024

Research & Innovation activities

Responsible & profitable Oil & Gas

OUR GREEN INNOVATIONS

- Carry out scientific and technical research and promote the value of its outcomes
- From fundamental research to the support of industrial-scale deployment

ENERGY

- Wind
- Energy storage
- Energy management systems
- Geothermal energy
- Natural hydrogen, H2 transport and storage
- Subsurface modeling for the energy transition
- Renewable gas processing

MOBILITY

- Biofuels and e-fuels
- Electric mobility:
 - Electric machines and power electronics
 - Batteries
- Hydrogen mobility: IC engines & fuel cells
- Environmental analysis of transport& digitalization of mobility

ENVIRONMENT

- Biobased products
- Advanced plastics recycling
- Recycling of metals from catalysts and batteries
- Industrial decarbonization: CCS/CCU
- Air/Soil/Water:
 - Environmental monitoring
 - Sustainable soil management
 - Water management & treatment

THE LEGACY OF OIL AND GAS

 Innovate to improve solutions and carry out expert studies, to meet energy and chemical product demands in a more environmentally sustainable way

OIL AND GAS

- Fuels
- Petrochemicals
- Natural gas processing
- Risers and production lines

Contributing to the funding of research on green technologies

FROM FUNDAMENTAL RESEARCH TO INDUSTRIAL DEVELOPMENT

R&I work on a variety of scales

- Experimental setups from lab scale to pre-industrial pilot
- Advanced digital tools: modeling and high-performance computing (HPC)
- In collaboration with academic and industrial partners

IFPEN SUBSIDIARIES AND SHAREHOLDINGS *

4,000 COLLABORATORS (IFPEN + SUBSIDIARIES)

Eco-energies & mobility

75% 24% la Cie des Mobilités 18% 11% 11% so sponge 6% Tec E Mouv

Processes & products, oil and gas, biomass, water, CO₂, materials recycling

Geosciences consulting & software

Training

EDUCATION AND TRAINING @ IFPEN

Training the next generation to become active players in the energy transition

Training through research

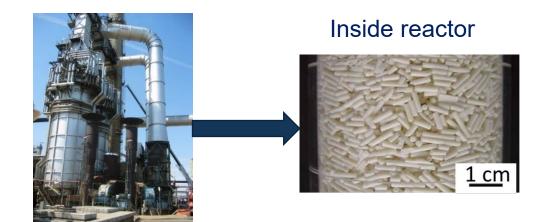
~150
PhD students
per year

Specialized engineering graduate programs

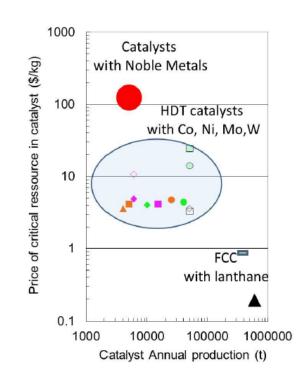
~500 graduates per year

Continuing professional training

~15, 000 professionals per year


CATALYST MANAGEMENT ROLE OF RECYCLING

REFINING AND CATALYSTS

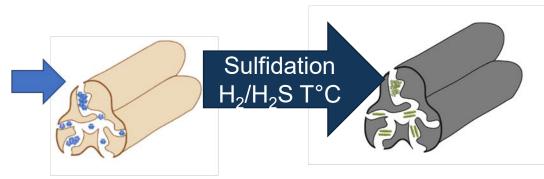

Refining

- More than 600 refineries in the world
- Crude oil world capacity 90 MBD
- Complex scheme, combining different processes
 - Separation / conversion / transformation / purification
 - Most of these processes are (thermo)catalytic

Catalysts in refinery

- Amount: 800-900 kt/y (loaded per year) / Market: 60 000-70 000 M\$/y
- Different types of heterogeneous catalysts
 - FCC Catalyst: Biggest catalyst volumes but low prices (~1\$/kg); Catalyst based on zeolite (ZSM-5) and alumina Doped with rare earth (La, few wt%)
 - Noble metal based catalysts (Pt, Pd,...): precious metal belongs to the refiners. After catalyst end-of-life, precious metals are separated from support (pyro- or hydrometallurgy process), purified and used as recycled raw chemical materials
 - Sulfide catalysts (mainly group VI & VIII: Ni, Co, Mo, W): Process of regeneration / rejuvenation to make several catalyst cycles with same catalyst batches. Market = 170 kt/y.

HOW TO PREPARE A HYDROTREATING CATALYST?



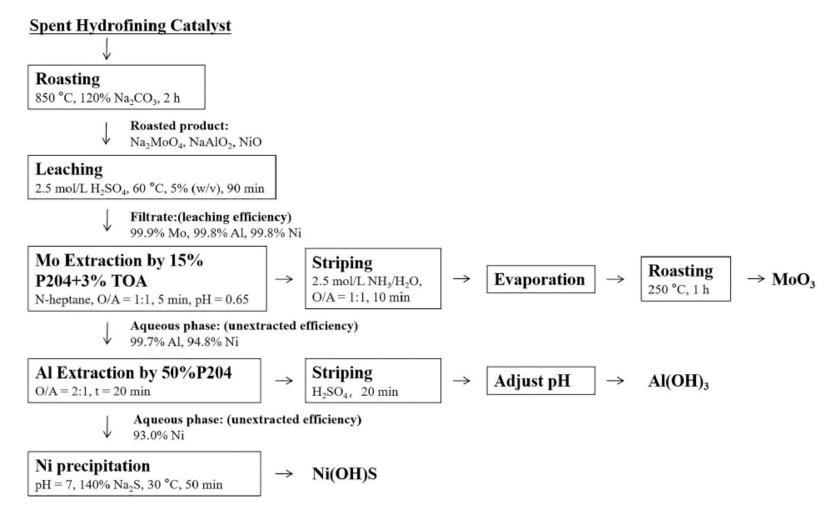
Ageing

Drying (calcination)

 => most HDT catalyst constituents are now part of EU critical materials list

Aluminium/Bauxite	Coking Coal	Lithium	Phosphorus
Anumony	Feldspar	Light rare earth elements	Ocanaiam
Arsenic	Fluorspar	Magnesium	Silicon metal
Baryte	Gallium	Manganese	Strontium
Beryllium	Germanium	Natural Graphite	Tantalum
Bismuth	Hafnium	Niobium	Titanium metal
Boron/Borate	Helium	Platinum group metals	Tungsten
Cobalt	Heavy rare earth elements	Phosphate Rock	Vanadium
		Copper	Nickel

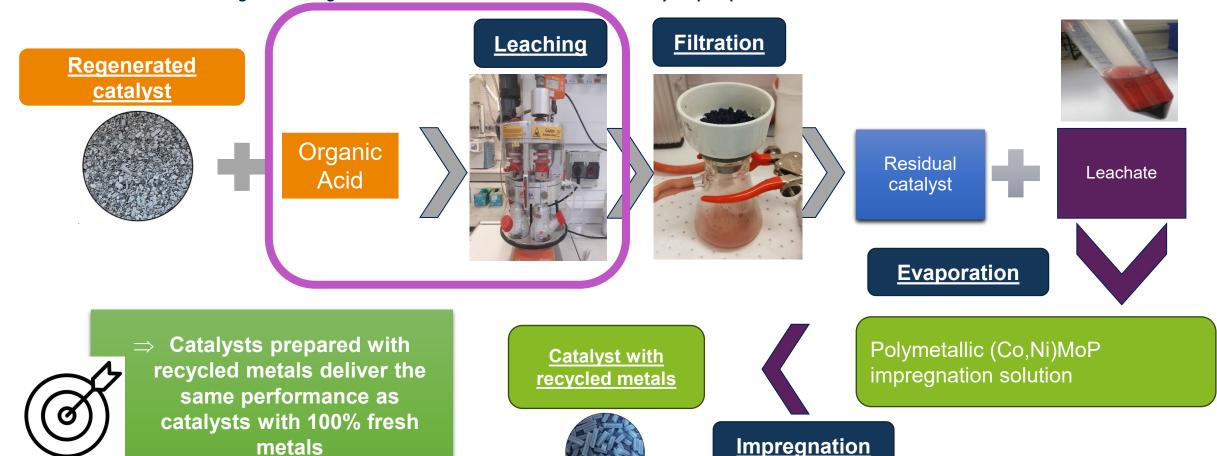
HDS CATALYST LIFE CYCLE: CURRENT CONTEXT



HDS CATALYST LIFE CYCLE: CURRENT CONTEXT

EXAMPLE OF FLOWSHEET FOR THE TOTAL RECYCLING OF ALL CONSTITUENT METALS FROM A SPENT NIMO HDT CATALYST

- Complete and complex hydrometallurgy scheme leading to extraction, separation and refining of all components of the catalyst
 - Molybdenum
 - Nickel
 - **Alumina**



IFPEN IMPLEMENTATION

Paving the way for a circular

economy for these materials

- An innovative opportunity to break with existing processes: recycle of polymetallic solutions
 - It is not necessary to separate metals from each other or from phosphorus.
 - Leaching with organic acids = additives for catalyst preparation

Pathak A., Mari Vinoba M., Kothari R.(2020): Emerging role of organic acids in leaching of

valuable metals from refinery-spent hydroprocessing catalysts, and potential techno-economic

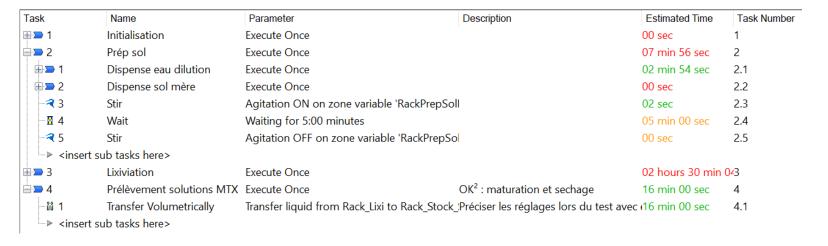
challenges: A review, Critical Reviews in Environmental Science and Technology

HIGH-THROUGHPUT LEACHING

LEACHING IN HIGH-THROUGHPUT EXPERIMENT

- « Chemspeed » automated tool used for catalyst preparation
 - Preparation of aqueous solution containing metal precursors by dilution (impregnation solution)
 - Dispense of the impregnation solution on an alumina support
 - Stirring for ageing; drying

- Adapted for acid leaching of spent catalysts
 - Preparation of acid leaching solution by dilution
 - Dispense of acid leaching solution on spent catalysts
 - Stirring (+ heating)
 - Sampling of leachates
 - Drying of leaching residues

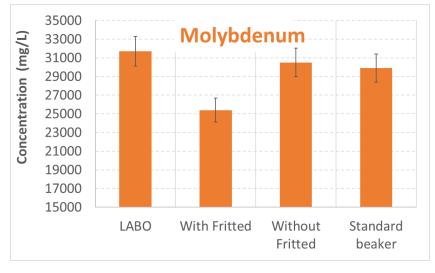

♦ Validation of the protocol by comparison with lab experiments

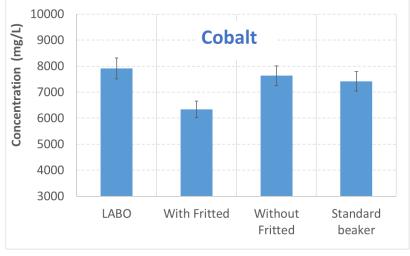
LEACHING IN HIGH-THROUGHPUT EXPERIMENT

Step 1: coding the automated protocol for leaching

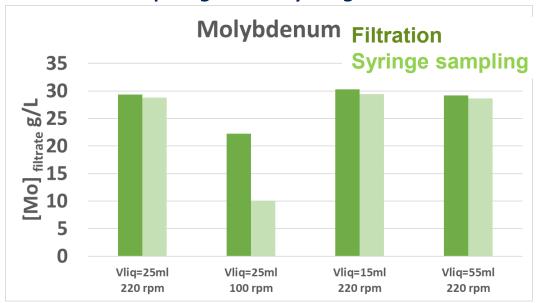
- Step 2 : validation of the protocol
 - Sampling of the leachate solution
 - Lab : filtration of the solution vs Chemspeed : sampling with a syringe
 - Geometry of the beakers
 - Stirring speed

LEACHING IN HIGH-THROUGHPUT EXPERIMENT **GEOMETRY OF THE BEAKER**

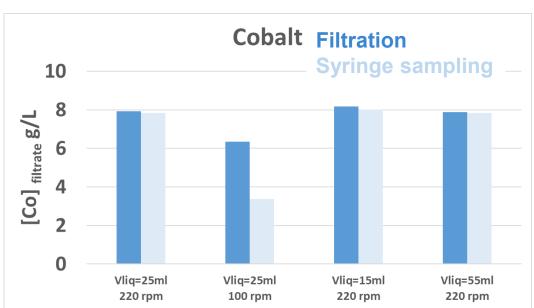

- Standard beaker
- Beaker with a <u>fritted glass filter</u>
 - Facilitates the liquid sampling without the presence of fine particles



- Citric acid 180 q/L
- L/S = 3.2 ml/g
- 2.5h, room temperature
- Stirring speed 220 rpm

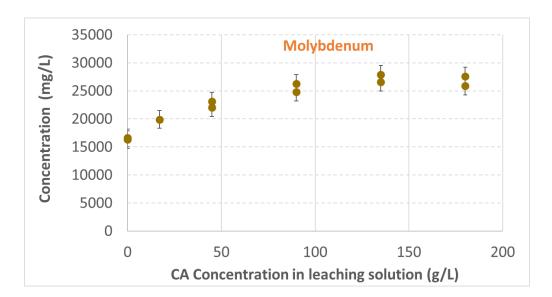


- Presence of the fritted limits the extraction. Bad diffusion of metals from solid to liquid
 - Problem of poor stirring

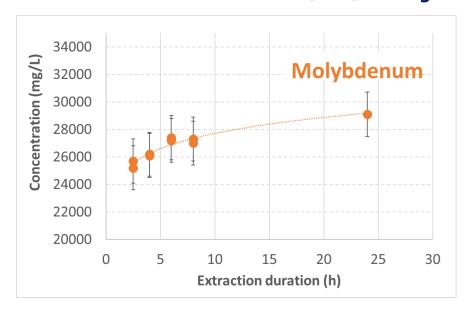

LEACHING IN HIGH-THROUGHPUT EXPERIMENT **EFFECT OF STRIRRING SPEED AND SAMPLING METHOD**

- Stirring speed : 100 or 220 rpm
- Leachate solution recovery
 - Filtration on buchner
 - Sampling with syringe

- Citric acid 180 g/L
- L/S= 3.2 ml/g
- 2.5h, room temperature
- Standard beaker


- Low stirring speed leads to low extraction rates, and heterogeneity of the solution concentration
- If high enough, no difference between filtration and syringe sampling : good homogeneity of the solution concentration
 - Whatever the liquid volume

LEACHING IN HIGH-THROUGHPUT EXPERIMENT FIRST SCREENING EXPERIMENTS


- Roasted spent CoMo catalyst
- L/S= 3.2 ml/g
- room temperature
- Standard beaker, 220 rpm

Citric acid concentration (2.5h)

12 experiments performed in 3 hours!

Extraction duration (at [CA]=180g/L)

CONCLUSION

- Development of an innovative route for circular economy of catalyst
 - Direct re-use of polymetallic leachate solutions to prepare catalysts
- Settlement of different tools to screen operating conditions for leaching
 - Automated tool for leaching
 - ICP analysis screening protocols
 - Can be used to screen operating conditions, catalysts pre-treatment protocols....

Innovating for a low-carbon and sustainable world

www.ifpenergiesnouvelles.com

IFP Energies nouvelles

1 - 4 avenue de Bois-Préau 92852 Rueil-Malmaison Cedex - France

IFP Energies nouvelles-Lyon

Rond-point de l'échangeur de Solaize BP 3 – 69360 Solaize - France

Tel.: +33 4 37 70 20 00

Tel.: +33 1 47 52 60 00