

Eramet Contribution of pilot tools @ EID Toward lower environmental impacting processes → Focus on manganese sinter

AURELIE AMALRIC - ERAMET IDEAS

HEAD OF PYROMETALLURGY DEPARTMENT

METNET – PILOTING ACTIVITIES

30/11/2023

ERAMET strategic roadmap

2

Eramet Ideas: a "mini" **Eramet in France**

Mn sinter product and process

Prometia Scientifc Seminar - METNET

Mn fines valorization \rightarrow Sinter-making process

Eramet Ideas sinter-making pilot

Prometia Scientifc Seminar - METNET

A flexible sinter-making pilot setup

High Intensity Eirich mixer

Mixer

Mixing plate

Testo 350 mobile gas analyzer O_2 , CO, CO₂, NO, NO₂, SO₂, H₂, C_xH_y

- Return fines generation (<5 mm)
- Hardness index (>6.3 mm) after aging
- Abrasion index (<0.5 mm) after aging

Analysis

- Chemistry (%Mn, %P, ...)
- Temperature profiles
- Gas analysis

- Speed of the flame front

Tumbling & screening

Sintered products

Biocarbon substitution

Prometia Scientifc Seminar - METNET

Context

What is Biocarbon ?

Current situation: fossil carbon from the geosphere is continuously added to the atmosphere

Biocarbon situation: atmospheric carbon is looped in few years through the biosphere

Charcoal/biochar: Carbonized biomass with high fixed C (>75%), medium volatiles (20%), low ash (<5%). Low density & fragile

Stakes

Technical motivations for charcoal substitution in sintering:

- Coke mostly act as a fuel (energy source)
- The mechanical properties of coke are not critical in sintering
- Charcoal is more reactive than coke (kinetics)

Economical & sustainability motivations:

- In 2021, the CO₂ emissions related to the use of coke breeze at the CIM accounted for 9% of the total group emissions linked to solid fuel & reductant
- Sinter is primarily used inside the group and is a critical component of Mn furnaces burden

Sinter-making with certified biocarbons^{*} can help to tackle an important source of the group CO_2 emissions; but also reduce the CO_2 footprint of all Mn-alloys products (scope 3).

*FSC and/or PAFC certifications

Pilot objectives

Substitute coke by BioC (25% / 50% / 75% / 100%)

Fines generation

% of fines generated without aging (%F < 5 mm)

- Similar magnitude than reference coke until 75% substitution
- Tendency : Increase when BioC % increases

Characterization after ageing

Constant Fix C

Hardness index after aging (d > 6.3 mm)

Optimum of BioC substitution

13 Prometia Scientifc Seminar - METNET

Abrasion index after aging (d < 500 μm)

Equivalent to the reference except 100% substitution

Valorization of tailings

Prometia Scientifc Seminar - METNET

Context and stakes

Spirals fines: high SiO2, small size

How to keep enough productivity with spirales ?

Impact of F2 fines substitution by spirales ?

- Chemical composition
- Quality / Productivity

Impact of specific cold pre-agglomeration ?

- ✓ Impact on permeability → Quality / Productivity
- No impact on chemical composition

Trials :

- Different substitution rates : 0%, 40%, and 100% Spirales
- Cold pre-agglomeration : without or with High Intensity mix (HI)

Sinter with spirals fines: higher strength but lower speed

Sinter with spirals fines: benefits of high-intensity mixing

Sinter with spirals fines: blend of 40% Spirals + high-intensity mixing

Conclusions

An agile tool which has proved its representativity ...

- **Static** configuration to simulate a **dynamic** process
- **Batch** operation to simulate a **continuous** industrial process

... but still looking at optimization depending on current stakes

- Batch minimum size / critical materials avalaibility
- Gas analysis / environnement stakes
- Sensitivity and variability optimization on going

Which brings needed data before industrial trials and let us innovate!

- Key information before commitment in investments decisions
 - → Process modifications (impact of pre-agglomeration, strategy of feed loading)
 - \rightarrow Impacts on product and environment (gas)
 - \rightarrow New products potentiality (quality, productivity)

