

MAXIBROME: A unique process for bromine regeneration

Prometia Annual Seminar – Florent Sassi

Lisbon, November 30th, 2023

Presentation Overview

- 1. SECHE Environnement / Trédi Saint-**Vulbas Focus**
- 2. Static Kiln a specific tool in a global market
- **3.** Maxibrome capacity increase through technological innovation
- 4. Conclusion

SECHE Environnement / Trédi Saint-Vulbas Focus

Presentation of the company and its range of businesses

SECHE Environnement

A leading player in the circular economy and waste recovery, Séché Environnement focuses on the ecological transition in all its solutions.

Circular economy - Biodiversity - Climate change

To industries and municipalities in France and abroad.

Séché Environnement - Partenaire de votre transition écologique (groupe-seche.com)

CIRCULAR ECONOMY AND DECARBONATION

- RECYCLING AND MATERIAL RECOVERY
- CREATION AND MANAGEMENT OF LOCAL **ENERGY LOOPS**

Séché Environnement offers tailor-made solutions for the recovery of hazardous and non-hazardous waste (1/3 of the activity) - historically, the Group's primary business.

HAZARD MANAGEMENT

- DECONTAMINATION
- WASTE TREATMENT

Séché also offers solutions for the treatment of all types of industrial waste (2/3 of the activity), particularly hazardous waste, a field in which its expertise is widely recognized.

SERVICES

- SERVICES FOR THE ENVIRONMENT
- SERVICES TO KEY INDSUTRIAL ACCOUNTS
 - Solarca Group
- LOGISTICS SERVICES

In terms of services, Séché has developed unique expertise in the field of decontamination and intervention in environmental emergencies as well as in chemical cleaning.

SECHE Environnement

Trédi Saint-Vulbas

SÉCHÉ ENVIRONNEMENT, PARTNER IN YOUR ECOLOGICAL TRANSITION

Primary activities

■ Thermal treatment of hazardous waste

- Solid, liquid, pasty, gaseous
- Organohalogen waste,
- Reactive, toxic, odorous & corrosive organic waste
- PCBs waste
- Halogenated & special gases
- Rotary kiln with a capacity of 35 000 t/year
- Static kiln with a capacity of 23 000 t/year
- Special industrial gases treatment workshop

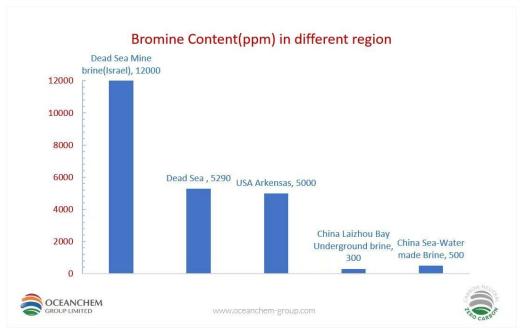
PCBs = Polychlorinated biphenyl

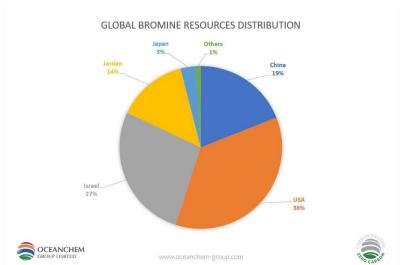
Transformers activities

- Decontamination, recovery & rehabilitation of PCBs transformers
- Preventive maintenance of dielectric fluids
- PCBs waste on-site depollution project

Specific activities

- Bromine brine regeneration
- Greenhouse gas regeneration

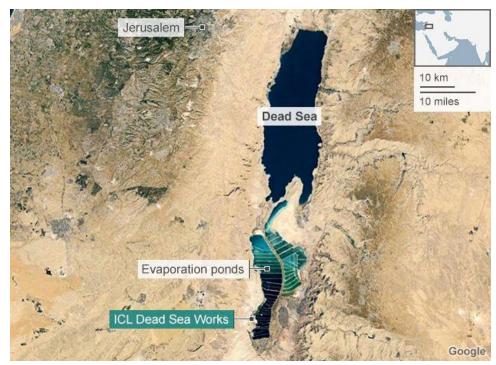


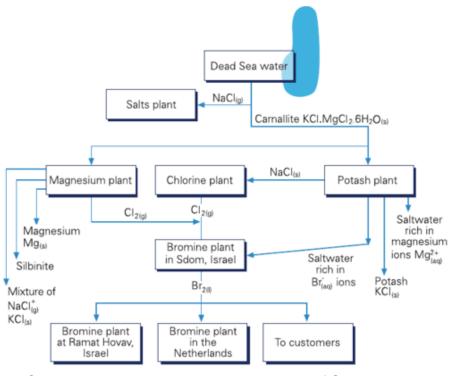


Static Kiln – a specific tool in a global market

Bromide regeneration in Trédi Saint-Vulbas

Bromine: Production and Use




Main producers worldwide :

- Israël Chemicals Ltd (ICL) → process the water from the Dead Sea. 280 kT/yr capacity
- Albemarle Corporation (U.S) → 148 kT/yr capacity in Arkansas / 60 kT/yr capacity in Jordan (joint venture with Arab Potash Company → Jordan Bromine operating in the Dead Sea)
- Lanxess (Germany) through Chemtura Corporation → 130 kT/yr capacity in Arkansas
- Gulf Resources (China) → 46 kT/yr capacity from underground brines extraction
- Tosoh Corporation (Japan) → 24 kT/yr capacity from sea water

- Around 90% of the effective World production (~ 600 kT/yr) is shared between the Dead Sea (Israel and Jordan sides) and the U.S (Arkansas, Michigan)
- Seche Environnement produces a Br equivalent of 4400 T/year → 1/3 of France's needs

Source: Who's afraid of bromine? - BBC News

Source: Brombook - Weizmann Institute of Science

■ "Virgin bromine" = extracted from natural resources

- Dead Sea \rightarrow oxidation from Br⁻ by Cl₂ in aqueous phase + stripping Br₂ (Kubierschky process)
- Need of highly favorable conditions (Surface / Temperature of evaporation ponds + High Br concentration in brines)
- Mediterranean Sea \rightarrow 40 mg/L Br and sporadic sources of Bromine (potash mines closed in France in 1998, ...)
 - → Br consumption in Europe but no long-term natural source to ensure local supply

- Bromine wide range of application
- → Largest single use in fire safety (~ 20% of Flame Retardants are bromine-derivated)
- → Br₂ and HBr are used as synthesis intermediates mainly in chemical and pharmaceutical industry

By Derivative	Clear brine fluidsHydrogen bromideOrganobromines
By Application	 Flame Retardants Biocides Organic Intermediates PTA synthesis Plasma Etching Oil and Gas Drilling
By End User	 Pharmaceuticals Cosmetics Textile Pesticides Automotive Others

Source: Researchnester - Bromine Market

> 25

< 0.02

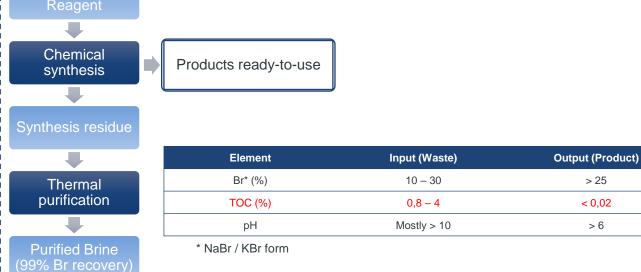
> 6

Br lifecycle through Regeneration cycle

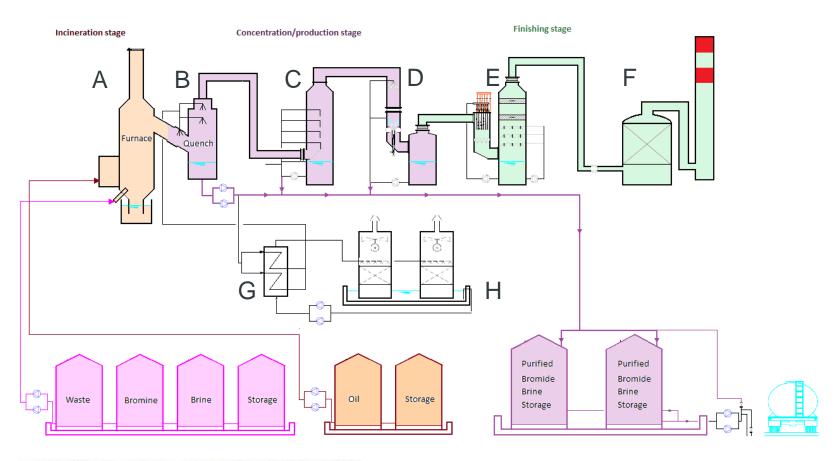
■ Organic synthesis of bromine derivative → waste co-generation during the washing step

Material recovery in Trédi Saint-Vulbas: from "waste" to "product" status → the purified brine meets brominated

intermediate producer specifications **Brominated** Reagent


Br₂ or HBr

synthesis


Chemical / Pharmaceutical Manufacturer

SECHE / Trédi Saint-Vulbas

Brominated Intermediate Producer

Process

- A. Static kiln : Operating temperature from 850 °C to 1200 °
- B. Quenching: Combustion gas cooled from 850/1200°C to 60/80 °C
- C. Crossed pulverisation
- D. Dynamic venturi
- E. High pressure ejectors
- F. Charcoal tower
- G. Heat exchanger
- H. Air Cooling Tower

Maxibrome – capacity increase through technological innovation

O₂ enriched combustion

Aim of the Maxibrome Project

Commercial Request

- Br Market growth (~ +4%/year 2022-2027)
- · SECHE's Client needs to increase destocking rate
- European Br producers needed

Technical limitation

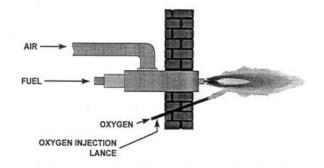
- Limited space
- Need to be ready quickly
- HCV (fuel) tense market

Maxibrome Project

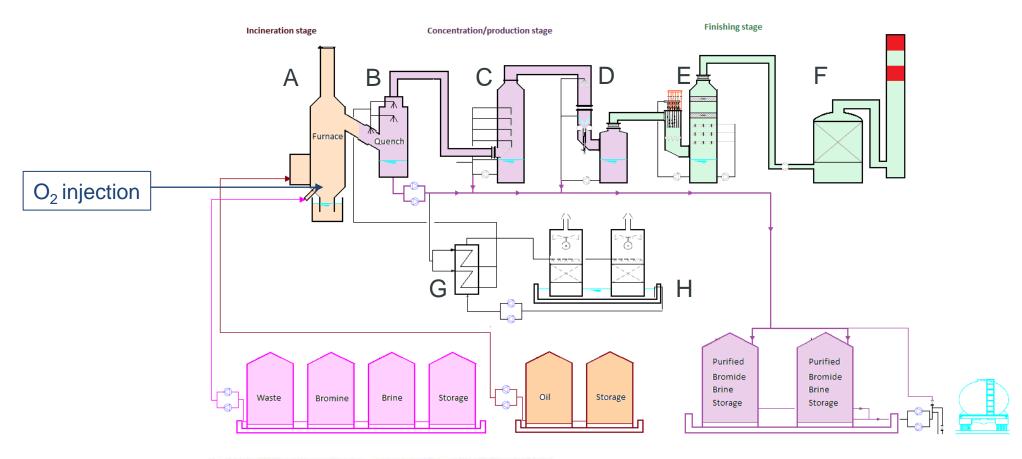
- Improve combustion conditions → HCV / LCV ratio
- Enhance brine capacity treatment at constant fumes flowrate
- Meet environmental standards (NOx emissions, ...)

HCV = High Calorific Value (waste) LCV = Low Calorific Value (waste)

Why O₂ enriched combustion?


Regular vs. Oxy-Fuel Combustion

Combustion

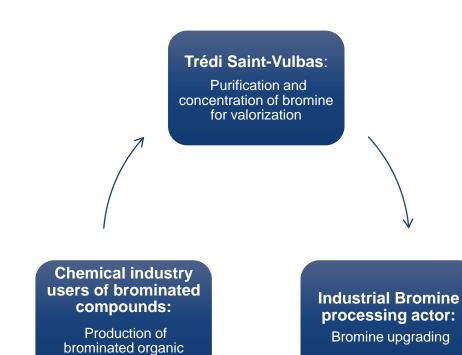

Oxy-Fuel Combustion

- \blacksquare Air = 78% N₂ + 21% O₂
- NOx emission risk ↑
- Energy consumption to heat useless volume of air

 O_2 source added into the combustion zone = capacity increase 1,6 T/h \rightarrow 2,5 T/h

O₂ injection into the combustion zone

- A. Static kiln: Operating temperature from 850 °C to 1200 °
- B. Quenching: Combustion gas cooled from 850/1200°C to 60/80 °C
- C. Crossed pulverisation
- D. Dynamic venturi
- E. High pressure ejectors
- F. Charcoal tower
- G. Heat exchanger
- H. Air Cooling Tower


Maxibrome Scoreboard

Parameter	Initial Process	Maxibrome
Tons of LCV (waste brine) treated / h	1,6	2,5
Tons of HCV treated / h	0,2	0,2
HCV / LCV ratio	12,5%	8%
Tons of waste treated / year	15 000	23 000
Pure O ₂ (Nm ³ /h)	0	200
Equivalent T(Br) produced	2800	4400
Tons of CO _{2 equ} / T(Br) produced	2,2	1,5

- Decrease of the HCV / LCV Ratio
- 55% increase for polluted brines treatment capacity
- **■** Fumes flowrate not impacted \rightarrow decrease of the T(CO_{2 eq}) / T(Br_{produced}) ratio

A specific process in Europe

- From "waste" to "product" status
- 99% of Br content recycled
- Thermal process know-how applied to material valorization and capacity increase
- SECHE actor of Europe's circular economy
 - Cost Reduction
 - **Environmental Footprint** Reduction

waste

Thank you for your attention

Any Question?

