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Background: climate goals

Sweden's Net Zero Goal (2045)

» Sweden aims for net emissions of greenhouse
gases by 2045.

EU Climate Targets (2030 & 2050)

» EU countries commit to a 55% greenhouse gas
reduction by 2030.

« EU climate neutrality by 2050.

Paris Agreement Goals

» Below 2°C above pre-industrial levels.
* Pursue efforts for 1.5°C.
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The milestone targets are visualized in the graph. Note that these targets do not include emissions
and upiake in the land use and forest sector. Source: Naturvardsverket
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Climate goal and its implication to the

metallurgical industries: Green metal
production
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Shift in fuels: from fossil fuels Shift in production process(es)
to CO2-lean energy sources



Key enablers for green metal
production

‘®- Green or fossil-free energy

Replacing fossil fuels like coal and coke

o9 Disruptive process & technology(es)

Replacing the existing process & technology(es) based on fossil fuels

Integration of the green energy into the disruptive process(es) &
Oo technology(es)

Improving the productivity, energy efficiency, materials efficiency, etc.
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Green or fossil-free energy and possible technical

pathways for green transition
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H2, biomass, and electricity: potentials and limitations

Hydrogen has its
thermodvnamic limitations.

Temperature (*C)

* A clean option but limited by thermodynamic 0 1(200 "‘.°° L) "3°° 200

constrains.
 Unsuitable for reducing Cr-ore, Mn-ore, Si-
ore, and sulfide ore.

Hydrogen:

» Regional availability restricts its usage.
» Primarily caters to specific metal producers.

log( PH;O”’H:’

Biomass:

Electricity  Effective in certain circumstances.

« Offers flexibility and efficiency in electrolysis-
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Ref 1.: H.G. Katayama, Reduction Kinetics of Synthetic Chromite Pellet With Re.latlon between equilibrium PHZO/PHZ
Hydrogen, Tetsu-to-Hagane(J. Iron Steel Inst. Jpn.). 72 (1986) 396402 ratio and temperature (Ref. 1)



Possible replacement of fossil energy
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Minimal CO2 emissions by enhancement in the
BF-based green steelmaking process
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®SWERIM Areas of expertise -

Biocoal application in the blast furnace can
reduce up to 30% CO2.

Biocoal in the blast furnace for To meet t_he climate goals, the BF-based
reduced climate impa ct steelmaking route must be phased out.

31 August, 2017

Use of biocoal in blast furnace-based steelmaking could reduce fossil
carbon dioxide emissions by as much as 30 percent in the short to
medium term. In a recently started research project under the
direction of Swerea MEFOS the methods will be developed and tested
at SSAB.
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Emerging disruptive technologies for green

ironmaking
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Improvement in electric-based green

steelmakmg process

Melting DRI/HBI/HCI in the EAF.

(e.g. wind enegy) - « Using renewable fuels in the EAF.

RenewabAa'eIectrlc energy lia ’

H2DRI .-~

. . Bio gas
: or HBI/HCI : : . . .
' ( ,-[ ) - « Biocarbon is crucial in the process.
Steel . . i’ :
scrap . :
: : Bio oil .
Slag | - ; &S % - Direct or indirect carbon emissions:
formers | - : :

Hydrogen..': » Graphite electrode: CO2 emissions 4-7 kg/ton steel
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@ Slag foaming with bio carbon;
@ Carbonization of the steel with bio carbon.
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Green steelmaking pathway |: H2 DRI - EAF

Iron production

production
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HYBRIT project

DRI melting at Swerim pilot EAF

Hybrit (hybritdevelopment.se)
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Green steelmaking pathway Il: H2 DRI — SAF — BOF

« Limited availability in DR-grade iron ore;
majority of the iron ore is blast furnace
\. - — grade. Using BF-grade iron ore in the H2

{ —
/4 [‘ | \\92 DRI-EAF green steelmaking process will
l F S‘agf"’me's}—l generate a large volume of slag and lead

> to high iron loss.

Renewable electric energy

(e.g. wind enegy) v

« Using H2 DRI — SAF — BOF green

steelmaking process, BF-grade iron ore
B [] B can be used for green steelmaking. BOF
steelmaking can be retained; SAF slag
|| sorsiig /AN be used for cement production.
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Green steelmaking pathway lll: H2 plasma reduction of iron ore (EU Horizon project H2PlasmaRed)

Arc melting furnace for hydrogen plasma-based
reduction

Fundamental studies

Project partners
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Green metal production pathway IV: electrolytic reduction — the power-to-metal concept
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Powder-to-metal: the basic concept



Green metal production pathway IV: Electrolytic
reduction of chalcopyrite and pyrite in molten salt

In situ separation of Cu, Fe and S
into elements

This project was funded by Hugo Carlsson
Foundation via Jernkontoret.

Intensity (a.u.)
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Possible pathways for production

of ferroalloys

Caoke (100% CO,)
SAF

Coke+Biocarbon [H] plasma

(-20% CO,) Electrolysis (Molten salt)

CH4 CCS/CCU
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(-50%CO,)
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Green production of flux and refractory

materials

Using renewable energy sources for the heating or firing process

CCU and CCS

Green Heating

Heating metallurgical vessels and steel with H2 burner
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Conclusions

Electricity, hydrogen, and biocarbon are important components in the shift towards sustainable metal production.

A robust and consistent supply of green electricity, hydrogen, and biocarbon is crucial for the successful transition to
green metal.

Securing high-quality iron ore poses a significant challenge for the production of green steel. H2 DRI — EAF and H2
DRI — SAF — BOF present promising pathways to decarbonize the steelmaking process.

Hydrogen plasma reduction emerges as a promising technology for the green production of steel and ferroalloys.
Challenges in green steel production extend to other industries in the value chain, particularly lime and refractory
production, as calcination processes in lime and refractory industries release substantial CO2, adding to the challenges

of achieving a green steel production.

Decarbonizing the entire value chain for green metal production is a challenging task for most of the metal producers.
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