

Institute of science and technology for a circular low-carbon energy economy

Eco-Glass-Fabrication from the assembly of secondary precursors EcoGlassFab

S. SCHULLER¹, K. HAMADACHE¹, F. ANGELI¹, F. GOETTMANN², B. DARBOURET³, F. BOISUMEAU³

¹CEA, DES, ISEC, DPME, Montpellier University, Marcoule, France ²EXTRACTHIVE, Sorgue, France ³FERRO France, Saint-Dizier, France

Prometia scientific seminar 2023 Lisboa 28, 30 november 2023

isec

Institute of science and technology for a circular low-carbon energy economy

Marcoule center

Management of radioactive waste from the reprocessing of spent nuclear fuel and from dismantling

CEA ISEC gather all historical R&D activities and also use its expertise to contribute to national **strategic independence on naturals resources and materials**

Glass industry in France

- Produces around 5 million ton of glass a year
- Generates 25,000 jobs at some 50 industrial sites in France
- Holds second place in Europe
- Manufactures multi-purpose glass

Energy consumption: 10 Gj/ton of glass

Primary resource consumption: ~1.4 t/ton of glass

CO₂ emissions: 500 kg/ton of glass (20% associated with raw

materials)

- Packaging glass
- Laboratory glassware
- Window glass
- Optical fiber, insulation fiber, reinforcement fiber
- Glass frit for multiple applications

Glass industry in France

This industry is committed to a virtuous circular economy

The French glass industry is subject to Extended Responsibility Producer since 1993

In 2021 the French glass industry share a common European ambition to collect more glass packaging and recycle 70 to 90 % by 2023

Conventional glass manufacturing in France

~77 %

Cullet – Glass from collection and manufacturing scrap

EcoGlassFab - Replacing raw materials with secondary materials

Primary mineral raw materials (mining)

Glass compositions Major elements (oxides)

- Silicon oxide (SiO₂) Sand
- Sodium oxide (Na₂CO₃)
- Calcium oxide (CaCO₃) Limestone Specific elements (Li, B, Al, Zn, Pb, F) Transition elements (Cr, Mn, Fe, Co, Ni, Cu,...)

EcoGlassFab: What are the sources of secondary raw material?

Mineral materials with low organic compounds

- Glass industry: specific cullet → pharmaceutical bottle, glass fiber (Si, B, Na), opal glass (F)
- Metallurgy industry: → silica fumes (Si), rinsing effluents (transition metals, Co, Ni, Cu, Mn, Cr, Fe)
- Mining industry: mining by-products → sand, (Si, Ca, Al) slag (Si, Fe,..), ...
- Dismantling: Photovoltaic panel glass (Si, Na, Ca)
- Bio-sourced materials: shellfish (Ca)
- Recycling industry: battery recycling by-products (Co, Ni, Li)
- Soil remediation: recovery transition elements from contaminated soils (Cu)
- → Secondary blended raw materials can be diluted in glass compositions

EcoGlassFab: Method and benefit?

Methodology of EcoGlassFab will lead to combine

- Inputs data on the available secondary raw materials
- Technical specifications of the glass industry
- → Calculate the best assemblies for the production of eco-designed glass

Nuclear glass frit

Primary raw material for conventional glass synthesis

kg

20

Nom	Quantité	Unit
Lithium Carbonate	80	kg
Dehydrated Borax	250	kg
Calcium carbonate	100	kg
Zinc Oxide	50	kg
Cobalt Oxide	1	kg
Nickel Oxide	1	kg
Alumina	80	kg
Boric Acid	80	kg
Iron oxyde	10	kg
Quartz	700	kg
Zircon Oxide	10	kg

1st question: Which materials play a key role in lifecycle analysis?

Preliminary Life-Cycle Analysis

Carbon

16 impact classes

Gabi 6 TS (10.6.2.9) and Data base Ecoinvent3.8

- Lithium carbonate = 42% (max. = 67 %, min. = 19%)
- **Borax = 19%** (max. = 27%, au min. = 3%)
- Cobalt oxide = 10% (max. = 45%, au min. =2%)
- Boric acid = 9% (max. = 23%, au min.=4%)
- Quartz = 6% (max. = 16%, au min.=1%)
- Others = 17% (max. = 34%, au min. 7%)

The most impacting precursors in relative are Lithium carbonate, Borax, Cobalt oxide, Boric acid and quartz

Eco Glass frit Fabrication

25% of primary raw materials replaced by secondary materials

Compounds

Quantity Unit

Database of secondary precursors

EcoGlassFab

		Silica fume (Si, O)	150	kg
		Borosilicate glass (Si, B, Na, O)	130	kg
Conventional		Spodumene (Si, Al, Li, O)	100	kg
O a mana a mana dia	Ougatity Unit	Black mass (Co, Ni,)	5	kg
Compounds	Quantity Unit	Recycled PV Glass (Si, Na, Ca)	25	kg
Lithium Carbonate	80 kg	Lithium Carbonate	60	kg
Dehydrated Borax	250 kg	→ Dehydrated Borax	230	kg
Calcium carbonate	100 kg	Calcium carbonate	100	kg
Zinc Oxide	50 kg	Zinc Oxide	50	kg
Cobalt Oxide	1) kg	Cobalt Oxide	0	kg
Nickel Oxide	1 kg	Nickel Oxide	0,5	kg
Alumina	(80) kg	Alumina	0	kg
Boric Acid	80 kg	Boric Acid	100	kg
Iron oxyde	40 kg	Iron oxyde	40	kg
Quartz	700 — kg	Quartz	(400)	kg
Zircon Oxide	10 kg	Zircon Oxide	10	kg
Carbone	20 kg	Carbone	15	kg

Comparative LCA modeling: System and fonctions

Conventional

end-of-life for

secondary

materials

Conventional glass fabrication

Comparative ACV modeling: Results

Considering a substitution of 25% of primary raw material

- Significant reduction impact in the human toxicity category compared to glass manufactured by conventional means
- Reduction of the environmental impacts by about -15% on all the 16 classes of the life cycle analysis (unique impact score by equivalent person)

Conclusion

- EcoGlassFab: Methodology under development to accelerate the manufacture of Eco-glass fabrication
- In the long term, it could become a scientific tool and a computer application merging all functionalities and parameters:
 - Database on secondary resources
 - Database on industrial glass specifications
 - LCA
 - Technical-economic analyses
 - Calculation of energy efficiency
 - Chemical reactivity tests
- Develop a regional, national or European association to create a platform for bringing together manufacturers with non valorized resources and glassmakers

R&D on vitrification for nuclear and non nuclear industries

Nuclear glass fabrication in full-scale prototype to qualified the material and the process

Recycling Cathode Ray Tube glasses

Glass sample after being melting at 1200°C in a cold crucible melter (200 kg)

Perspectives: Proof of concept EcoGlassFab

At lab scale – (800 g)

In a cold crucible (400 kg)

Thank you for your attention

Sophie Schuller – PROMETIA scientific seminar 2023

R&D from lab scale to industrial support

Vitrification and High Temperatures Processes Unit (CEA ISEC - Marcoule)

Technology Readiness Level

Optimization of nuclear glasses and industrial vitrification technologies