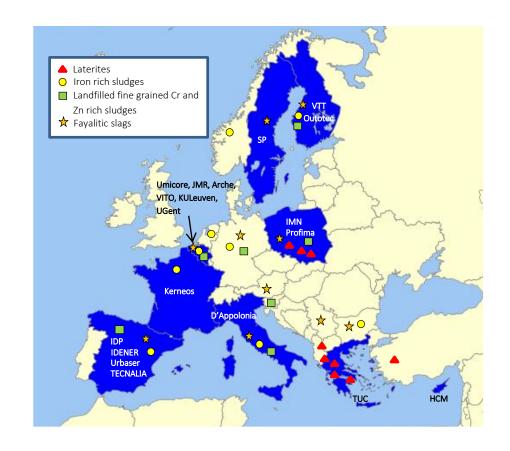


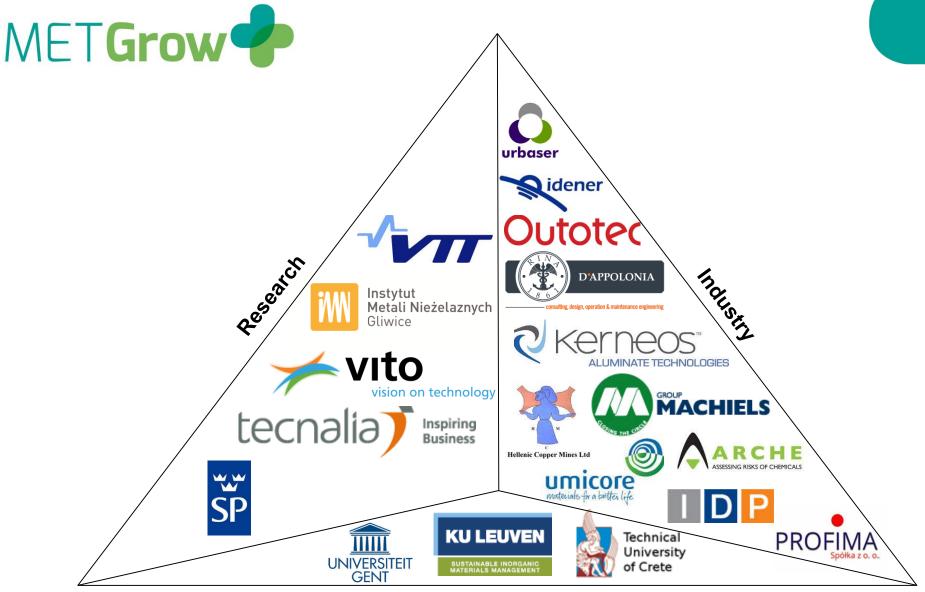
METGROW+ Approach to Flexible Raw Material Production

4th PROMETIA Scientific Seminar, Barcelona, 28.11.2017

Presented by: Päivi Kinnunen, VTT, METGROW+ coordinator



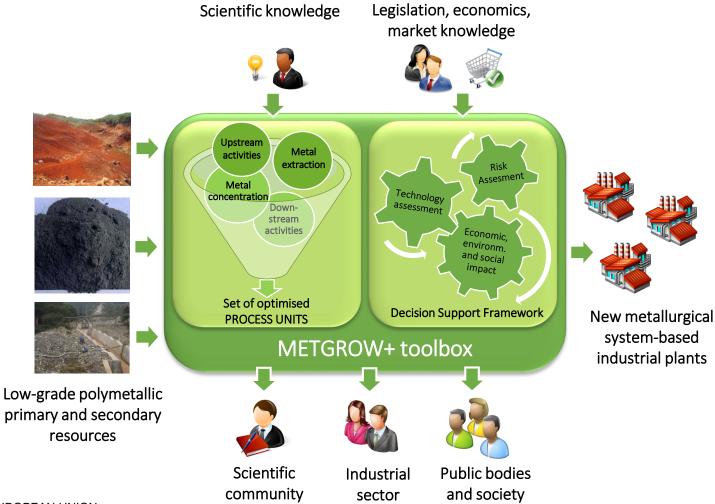
METGROW+ PROJECT AND CONCEPT



METGROW+ Project

- Metal Recovery from Low Grade
 Ores and Wastes Plus
- 4 years
- **1**.2.2016 31.1.2020
- Topic: New metallurgical systems
- 7.9 M€, 19 partners from 9 member states
 - 5 SMEs
 - 6 large companies
 - 5 research institutes
 - 3 universities

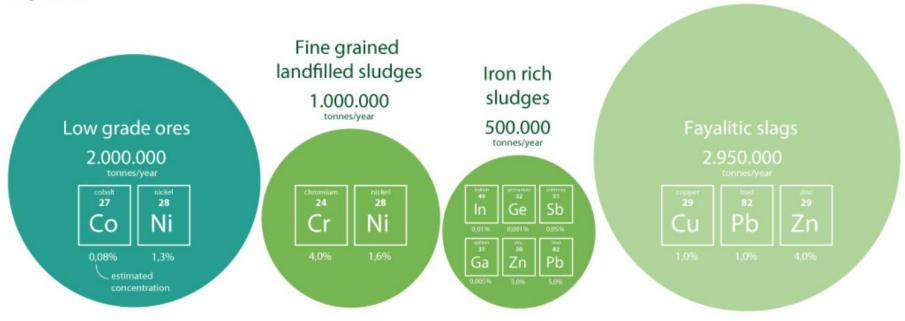
Universities



EUROPEAN UNION
This project has received funding from the European

Union's Horizon 2020 research and innovation programme under grant agreement No 690088.

Concept



Four Selected Low-Grade Resource Families

Material streams in METGROW+ project: yearly production rates in the EU

rough estimate

Union's Horizon 2020 research and innovation programme under grant agreement No 690088.

Specific selected materials

LOW GRADE ORES

- Polish saprolitic laterite
- Greek saprolitic laterite
- Greek limonitic laterite

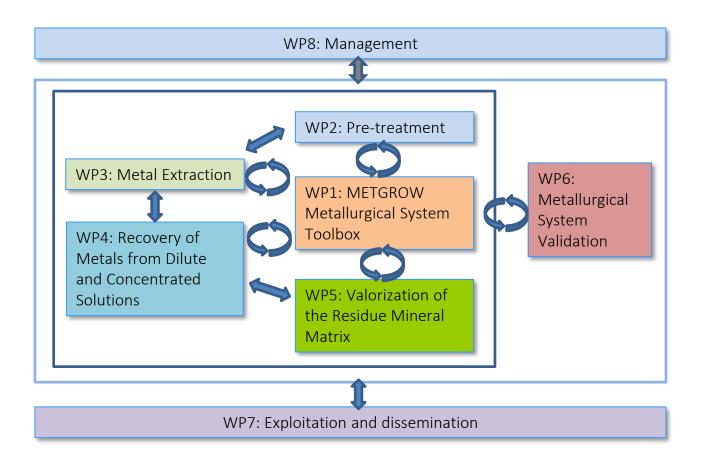
REFINING PROCESS FRACTIONS

- Jarosite
- Goethite
- Fayalitic slag
- Fe-Ni slag

WASTE TREATMENT FRACTIONS

- Landfilled Zn-rich sludge
- Landfilled Cr-rich sludge
- Steel sludge
- Shredder sludge
- Automotive shredder residues
- Old heap from copper leaching

EUROPEAN UNION
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 690088.



ZN-RICH SLUDGE

Value chain in METGROW+

TECHNOLOGY DEVELOPMENT

Pre-treatment

- Detailed characterization of low grade primary and secondary materials
 - Content of economically important and critical metals
 - Some materials very fine or with high organics content
- Selection and optimisation of the most flexible technologies for pretreatment
- Production of enriched materials
 - High efficiency, low operating costs and limited environmental impact

Main pre-treatment results

- Crushing
- Grinding
- Pulping
- Flotation
- Sulphidation
- Roasting
- Magnetic separation
- Wet shaking table
- Agglomeration
- Co-valorization of wastes

Main pre-treatment results

- Crushing
- Grinding
- Pulping
- Flotation
- Sulphidation
- Roasting
- Magnetic separation
- Wet shaking table
- Agglomeration

EUROPEAN UNION

Co-valorization of wastes

Laterites

Zn-rich sludge

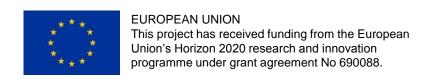
Automotive shredder residue

Fayalitic slags

Metal extraction

Secure high Metal yield for main extraction target metal process development "Secure industrial viability" Is S/L separation successful? **EUROPEAN UNION** This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 690088.

Process optimization


- Secure yields for secondary target metals
- Increase selectivity
- Increase kinetics
- Increase reject quality
- Decrease costs

Extraction methods for laterites

POLISH LATERITE – Main target Ni				
	Atmospheric acid leaching	Heap leaching	Heterotrophic bioleaching	Solvometallurgical leaching

GREEK LATERITES (3 ores) – Main target Ni			: Ni
Atmospheric acid leaching	Heap leaching	Autotrophic bioleaching	Ionometallurgical extraction

Extraction methods for refining process fractions

	JAROSITE – Main target Zn and Pb				
ROASTING PRE-STEP	NATIVE JAROSITE				
Heap leaching	Heap leaching	Autotrophic bioleaching	Solvometallurgical leaching	Ionometallurgical extraction	Two step plasma- pyro

FAYALITIC SLAG - Main target Zn			FE-NI SLAG – N	lain target Ni	
Autotrophic bioleaching	Heterotrophic bioleaching	Ionometallurgical extraction	Plasma-pyro	Atmospheric acid leaching	Heap leaching

Extraction methods for sludges

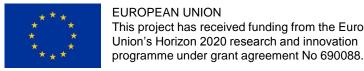
LANDFILLED	LANDFILLED ZN-RICH SLUDGE – Main target Zn			
NATIVE SLUDGE	THERMAL PRE-TREATMENT (Removal of oil/grease)			
Heap leaching	Autotrophic bioleaching	Ionometallurgical extraction		

L.F. CR-RICH SLUDGE Main target Cr and Ni

Heap leaching

Solvometallurgical leaching

STEEL SLUDGE – Main target Zn


MAGNETIC SEPARATION

NATIVE SLUDGE

Heap leaching

Solvometallurgical leaching

Ionometallurgical extraction

Extraction methods for sludges

SHREDDER SLUDGE

Main target Zn and Cu

MAGNETIC SEPARATION

Heap leaching

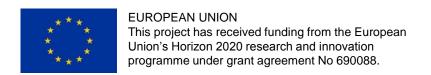
AUTOMOTIVE SHREDDER RESIDUE

Main target Zn and Cu

Heterotrophic bioleaching

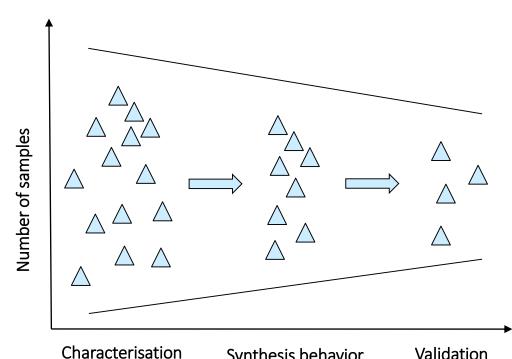
Main metal extraction results

- New methods for challenging materials
 - Laterites, new hydrometallurgical research
 - Multiple new treatment methods for jarosite, fayalite and sludges



Metal recovery from leachates

Physico-chemical recovery		
Solvent extraction, precipitation and ion exchange	Supported liquid membranes	Supported ionic liquid phases


Biological recovery		
Biosorption	Bioprecipitation	Assessment of cost effective
Bioserption	Bioprecipitation	energy sources

Electrowinning recovery		
	Metal electrodeposition from Deep Eutectic Solvents	Recovery of copper from dilute solutions

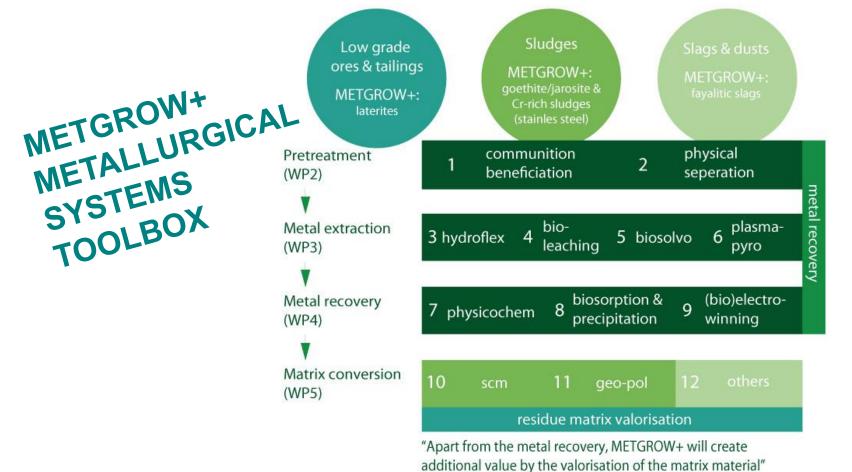
Screening tool for characterization and assessment of residues

& Assessment
(XRD,
Calorimetry,
Dissolution test)

Synthesis behavior
(Early strength development,
Compressive strength on small size samples)

(Compressive strength on standard samples, Durability, Leaching)

22



TARGET IN FLEXIBLE PROCESSING

Primary and secondary resources containing base and critical metals

Progress in the state-of-the-art

- Several unit processes developed
- Progress beyond the state-of-the-art is also a combination of pretreatment, leaching, recovery and residue valorization
- Validations for best process flow sheets start in the beginning of 2018

- Previously untapped primary and secondary resources are unlocked
- Direct impact in metal exploitation and production rates
- Decrease of import dependency
- Toolbox including technological, environmental, economic and social assessments helps in decision making process

programme under grant agreement No 690088.

Thank you for listening.